January 8, 2026

SirBikramSutradhar : Record Holder

Best Teacher Award 2023 & 5-Times World Records Expert: Mastering IIT-JAM, IIT-JEE Main/Adv, NEET, TBJEE, WBJEE, ICSE, ISC, CBSE,TBSE with Technology, Job Notifications, PhD Admissions, University & College Admissions, Upcoming Cars, Mobile Gadgets, Global GK & Board Solutions! And many more.

📘 Class 11 & 12 Mathematics Inverse Trigonometric Functions Grand master Bikram Sutradhar-Level Question Bank 

📘 Class 11 & 12 Mathematics Inverse Trigonometric Functions Grand master Bikram Sutradhar-Level Question Bank 

📘 Class 11 & 12 Mathematics Inverse Trigonometric Functions Grand master Bikram Sutradhar-Level Question Bank 

Inverse Trigonometric Functions

Inverse Trigonometric Functions

📘 Class 11 & 12 Mathematics Inverse Trigonometric Functions Grand master Bikram Sutradhar-Level Question Bank 
📘 Class 11 & 12 Mathematics Inverse Trigonometric Functions Grand master Bikram Sutradhar-Level Question Bank 
Class 11 & 12 – Inverse Trigonometric Functions Grand master Bikram Sutradhar | 110 Question Bank

📘 Class 11 & 12 Mathematics Inverse Trigonometric Functions

Chapter: Inverse Trigonometric Functions

Complete Grand master Bikram Sutradhar-Level Question Bank (Only Questions)


🔹 ONE MARK QUESTIONS (1–20)

  1. Find the value of (i) $ \sin^{-1}\frac{1}{2} $ (ii) $ \cos^{-1}0 $ (iii) $ \tan^{-1}1 $ (iv) $ \cot^{-1}1 $
  2. Evaluate: (i) $ \sin\left(2\sin^{-1}\frac{3}{5}\right) $ (ii) $ \tan\left(\cos^{-1}\frac{4}{5}\right) $
  3. If $ \tan^{-1}x + \tan^{-1}y = \frac{\pi}{4} $ and $ xy < 1 $, find $ x+y+xy $.
  4. Solve $ 3\tan^{-1}x + \cot^{-1}x = \pi $ for $ x $.
  5. If $ \sin^{-1}x + \sin^{-1}y = \frac{\pi}{3} $, find $ \cos^{-1}x + \cos^{-1}y $.
  6. If $ \cos^{-1}a + \cos^{-1}b + \cos^{-1}c = \pi $, find $ a+b+c $.
  7. Evaluate $ \tan^{-1}(\sec 2) + \cot^{-1}(\csc 3) $.
  8. Evaluate $ \sin^{-1}\Big[\cot^{-1}(\cos^{-1}(\tan 1))\Big] $.
  9. If $ a = 2\sin^{-1}x + \cos^{-1}x $, find constants $ a $ .
  10. Solve $ \cos^{-1}(\sin(\cos x)) = \frac{\pi}{4} $.
  11. Find the principal value of $ \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) $.
  12. Evaluate $ \cos\left(2\cos^{-1}\frac{2}{3}\right) $.
  13. Solve for $ x $: $ \tan^{-1}x – \tan^{-1}2x = 0 $.
  14. If $ \sin^{-1}x – \sin^{-1}y = \frac{\pi}{6} $, find $ x-y $ in terms of $ x $ and $ y $.
  15. Find the value of $ \tan\Big(\sin^{-1}\frac{4}{5}\Big) $.
  16. Evaluate $ \cos^{-1}(\sin(\frac{\pi}{4})) $.
  17. If $ \cot^{-1}x + \cot^{-1}y = \frac{\pi}{2} $, find $ xy $.
  18. Solve $ \tan^{-1}2 + \tan^{-1}3 $ in exact form.
  19. Find $ x $ if $ 2\tan^{-1}x = \frac{\pi}{3} $.
  20. Evaluate $ \sin^{-1}(\cos \frac{\pi}{3}) $.

🔹 TWO MARK QUESTIONS (21–40)

  1. Prove $ \tan^{-1}\frac{1}{2}\sin^{-1}\frac{3}{4} = \frac{1}{2}\tan^{-1}\frac{12}{5} $.
  2. Show that $ \sin^{-1}(\cot^{-1}(\cos(\tan x))) $ is independent of $ x $.
  3. Evaluate $ \tan^{-1}\frac{2}{3} + \tan^{-1}\frac{1}{5} $.
  4. Solve $ \tan^{-1}x + \tan^{-1}2x = \frac{\pi}{4} $.
  5. Solve $ \tan^{-1}(2x) – \tan^{-1}(x) = \frac{\pi}{6} $.
  6. Prove $ \sin^{-1} \frac{1}{3} + \sin^{-1} \frac{1}{2} = \sin^{-1} \frac{7}{12} $.
  7. Solve for $ x $: $ \tan^{-1}x + \tan^{-1}(x+1) = \frac{\pi}{4} $.
  8. If $ \sin^{-1}x + \sin^{-1}y = \frac{\pi}{2} $, find $ x^2 + y^2 $.
  9. Evaluate $ \cos^{-1}\frac{1}{\sqrt{2}} + \sin^{-1}\frac{1}{\sqrt{2}} $.
  10. Solve $ \tan^{-1}x + \tan^{-1}2x + \tan^{-1}3x = \pi $.
  11. If $ \sin^{-1}x = \cos^{-1}y $, find relation between $ x $ and $ y $.
  12. Prove $ \tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = \pi $.
  13. Find the value of $ \sin(2\tan^{-1}3) $.
  14. Evaluate $ \tan^{-1}5 – \tan^{-1}2 $ in exact form.
  15. Solve $ 2\tan^{-1}x = \tan^{-1}\frac{3}{4} $.
  16. If $ \sin^{-1}x + \sin^{-1}y = \frac{\pi}{6} $, express $ y $ in terms of $ x $.
  17. Evaluate $ \cos^{-1}(\sin(\frac{\pi}{4})) $.
  18. Solve $ \tan^{-1}x + \tan^{-1}\frac{1}{x} = \frac{\pi}{2} $.
  19. Find $ x $ if $ \cot^{-1}x + \tan^{-1}x = \frac{\pi}{4} $.
  20. Evaluate $ \sin^{-1}\frac{3}{5} + \cos^{-1}\frac{4}{5} $.

🔹 FOUR MARK QUESTIONS (41–70)

  1. Prove $ \sin^{-1}\frac{1}{4} + \sin^{-1}\frac{1}{5} = \sin^{-1}\frac{9}{20} $.
  2. Prove $ \cot^{-1}7 + \cot^{-1}8 + \cot^{-1}18 = \cot^{-1}3 $.
  3. Prove $ 2\tan^{-1}\frac{\sin x}{1+\cos x} = x $.
  4. Solve $ \tan^{-1}x + \tan^{-1}(x+2) = \frac{\pi}{4} $.
  5. Prove $ \tan^{-1}a + \tan^{-1}b = \tan^{-1}\frac{a+b}{1-ab}, \quad ab<1 $.
  6. Solve $ \tan^{-1}x + \tan^{-1}(x-1) = \frac{\pi}{6} $.
  7. Prove $ \sin^{-1}x + \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2}+y\sqrt{1-x^2}) $.
  8. Solve $ 2\tan^{-1}x + \tan^{-1}(2x) = \frac{\pi}{2} $.
  9. Evaluate $ \tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 + \tan^{-1}4 $.
  10. Prove $ \cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy – \sqrt{(1-x^2)(1-y^2)}) $.
  11. Solve $ \tan^{-1}x – \tan^{-1}(x-1) = \frac{\pi}{4} $.
  12. Find the value of $ \sin(2\sin^{-1}0.6) $ using identities.
  13. Solve $ \tan^{-1}x + \tan^{-1}2x + \tan^{-1}3x = \pi $.
  14. Prove $ \tan^{-1}3 + \tan^{-1}7 = \tan^{-1}5 $.
  15. Solve $ \sin^{-1}x + \sin^{-1}y = \frac{\pi}{3} $.
  16. Prove $ \tan^{-1}1 + \tan^{-1}\frac{1}{2} = \frac{\pi}{4} $.
  17. Solve $ \tan^{-1}(x+1) – \tan^{-1}x = \frac{\pi}{6} $.
  18. Evaluate $ \cos(2\tan^{-1}\frac{1}{2}) $.
  19. Solve $ \tan^{-1}x + \tan^{-1}(2x+1) = \frac{\pi}{4} $.
  20. Prove $ \tan^{-1}x + \tan^{-1}\frac{1}{x} = \frac{\pi}{2}, \quad x>0 $.
  21. Solve $ \sin^{-1}x – \sin^{-1}y = \frac{\pi}{4} $.
  22. Evaluate $ \tan(2\tan^{-1}3) $.
  23. Solve $ \tan^{-1}x + \tan^{-1}(x+3) = \frac{\pi}{3} $.
  24. Prove $ 2\tan^{-1}x + \cot^{-1}x = \pi $.
  25. Solve $ \sin^{-1}x + \cos^{-1}y = \frac{3\pi}{4} $.
  26. Prove $ \tan^{-1}x – \tan^{-1}y = \tan^{-1}\frac{x-y}{1+xy} $.
  27. Solve $ \tan^{-1}x + \tan^{-1}2x + \tan^{-1}3x + \tan^{-1}4x = \pi $.
  28. Find domain and range of $ f(x) = \tan^{-1}(\frac{2x}{1-x^2}) $.
  29. Solve $ \tan^{-1}x + \tan^{-1}\frac{1-x}{1+x} = \frac{\pi}{4} $.
  30. Evaluate $ \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{5} $.

🔹 HIGHER ORDER THINKING (HOTS) QUESTIONS (71–90)

  1. Solve $ \tan^{-1}\frac{1}{x} + \tan^{-1}\frac{1}{x+1} = \frac{\pi}{4} $.
  2. Prove $ \sin^{-1}x + \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2} + y\sqrt{1-x^2}) $.
  3. Find domain and range of $ f(x) = \tan^{-1}\frac{2x}{1-x^2} $.
  4. Prove $ \cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy – \sqrt{(1-x^2)(1-y^2)}) $.
  5. Solve $ 2\tan^{-1}x + \tan^{-1}(1-x) = \frac{\pi}{2} $.
  6. If $ \sin^{-1}x + \sin^{-1}y = \frac{\pi}{2} $, find $ xy $ in terms of $ x $ and $ y $.
  7. Evaluate $ \tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 + \tan^{-1}4 + \tan^{-1}5 $.
  8. Prove $ \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \tan^{-1}\frac{5}{7} $.
  9. Solve $ \tan^{-1}x + \tan^{-1}2x + \tan^{-1}3x = \pi $ for real $ x $.
  10. Evaluate $ \sin^{-1}\frac{1}{3} + \sin^{-1}\frac{2}{3} $.
  11. Solve $ \tan^{-1}x + \tan^{-1}(x+4) = \frac{\pi}{4} $.
  12. Prove $ 2\tan^{-1}\frac{\sin x}{1+\cos x} = x $ for all $ x \in \mathbb{R} $.
  13. Solve $ \tan^{-1}x – \tan^{-1}y = \tan^{-1}\frac{x-y}{1+xy} $.
  14. Find domain and range of $ f(x) = \sin^{-1}(\frac{2x}{1+x^2}) $.
  15. Solve $ \tan^{-1}x + \tan^{-1}(2x-1) = \frac{\pi}{3} $.
  16. Evaluate $ \sin(2\tan^{-1}\frac{1}{3}) $.
  17. Solve $ \tan^{-1}x + \tan^{-1}\frac{1}{x} = \frac{\pi}{2}, \quad x>0 $.
  18. Solve $ \tan^{-1}x + \tan^{-1}(x+1) + \tan^{-1}(x+2) = \pi $.
  19. Prove $ \tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = \pi $.
  20. Solve $ \tan^{-1}x + \tan^{-1}(x+5) = \frac{\pi}{4} $.

🔹 COMPETITIVE TYPE QUESTIONS (91–110)

  1. If $ \sin^{-1}x + \sin^{-1}y = \frac{\pi}{2} $, prove $ x^2 + y^2 + 2xy\sqrt{(1-x^2)(1-y^2)} = 1 $.
  2. Solve $ \tan^{-1}x + \tan^{-1}2x + \tan^{-1}3x + \tan^{-1}4x + \tan^{-1}5x = \pi $.
  3. Prove $ \sin^{-1}\frac{1}{4} + \sin^{-1}\frac{1}{3} = \sin^{-1}\frac{7}{12} $.
  4. Solve $ \tan^{-1}x + \tan^{-1}2x + \tan^{-1}3x = \frac{\pi}{2} $.
  5. Evaluate $ \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} $.
  6. Prove $ \tan^{-1}a + \tan^{-1}b + \tan^{-1}c = \pi $ given $ a+b+c=3 $.
  7. Solve $ \tan^{-1}x + \tan^{-1}(x+6) = \frac{\pi}{4} $.
  8. Prove $ \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{1}{2} $.
  9. Solve $ \tan^{-1}x + \tan^{-1}(x+7) + \tan^{-1}(x+14) = \pi $.
  10. If $ \sin^{-1}x + \cos^{-1}y = \frac{\pi}{2} $, express $ y $ in terms of $ x $.
  11. Prove $ \tan^{-1}x + \tan^{-1}\frac{1}{x} = \frac{\pi}{2}, \quad x>0 $.
  12. Prove $ 2\tan^{-1}\frac{1}{1+x} = \tan^{-1}\frac{2}{x} $.
  13. Prove $ \sin^{-1}x + \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2} + y\sqrt{1-x^2}) $.
  14. Prove $ \cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy – \sqrt{(1-x^2)(1-y^2)}) $.
  15. Prove $ \tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = \pi $.
  16. Prove $ \tan^{-1}a + \tan^{-1}b = \tan^{-1}\frac{a+b}{1-ab}, \quad ab<1 $.
  17. Solve $ \tan^{-1}x + \tan^{-1}2x = \frac{\pi}{4} $.
  18. Solve $ \tan^{-1}x – \tan^{-1}(x-1) = \frac{\pi}{4} $.
  19. Prove $ 2\tan^{-1}\frac{\sin x}{1+\cos x} = x $.
  20. Prove $ \sin^{-1}\frac{1}{4} + \sin^{-1}\frac{1}{5} = \sin^{-1}\frac{9}{20} $.

Written By

Full Stack Developer and 5-Time World Record Holder, Grandmaster Bikram Sutradhar

  bAstronautWay :  A Government-Approved Trademark Brand

    SirBikramSutradhar on YouTube

Leave a Reply

Your email address will not be published. Required fields are marked *