📘 Class 11 & 12 Mathematics Inverse Trigonometric Functions Grand master Bikram Sutradhar-Level Question Bank
📘 Class 11 & 12 Mathematics Inverse Trigonometric Functions Grand master Bikram Sutradhar-Level Question Bank
Inverse Trigonometric Functions
Inverse Trigonometric Functions

📘 Class 11 & 12 Mathematics Inverse Trigonometric Functions
Chapter: Inverse Trigonometric Functions
Complete Grand master Bikram Sutradhar-Level Question Bank (Only Questions)
🔹 ONE MARK QUESTIONS (1–20)
- Find the value of (i) $ \sin^{-1}\frac{1}{2} $ (ii) $ \cos^{-1}0 $ (iii) $ \tan^{-1}1 $ (iv) $ \cot^{-1}1 $
- Evaluate: (i) $ \sin\left(2\sin^{-1}\frac{3}{5}\right) $ (ii) $ \tan\left(\cos^{-1}\frac{4}{5}\right) $
- If $ \tan^{-1}x + \tan^{-1}y = \frac{\pi}{4} $ and $ xy < 1 $, find $ x+y+xy $.
- Solve $ 3\tan^{-1}x + \cot^{-1}x = \pi $ for $ x $.
- If $ \sin^{-1}x + \sin^{-1}y = \frac{\pi}{3} $, find $ \cos^{-1}x + \cos^{-1}y $.
- If $ \cos^{-1}a + \cos^{-1}b + \cos^{-1}c = \pi $, find $ a+b+c $.
- Evaluate $ \tan^{-1}(\sec 2) + \cot^{-1}(\csc 3) $.
- Evaluate $ \sin^{-1}\Big[\cot^{-1}(\cos^{-1}(\tan 1))\Big] $.
- If $ a = 2\sin^{-1}x + \cos^{-1}x $, find constants $ a $ .
- Solve $ \cos^{-1}(\sin(\cos x)) = \frac{\pi}{4} $.
- Find the principal value of $ \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) $.
- Evaluate $ \cos\left(2\cos^{-1}\frac{2}{3}\right) $.
- Solve for $ x $: $ \tan^{-1}x – \tan^{-1}2x = 0 $.
- If $ \sin^{-1}x – \sin^{-1}y = \frac{\pi}{6} $, find $ x-y $ in terms of $ x $ and $ y $.
- Find the value of $ \tan\Big(\sin^{-1}\frac{4}{5}\Big) $.
- Evaluate $ \cos^{-1}(\sin(\frac{\pi}{4})) $.
- If $ \cot^{-1}x + \cot^{-1}y = \frac{\pi}{2} $, find $ xy $.
- Solve $ \tan^{-1}2 + \tan^{-1}3 $ in exact form.
- Find $ x $ if $ 2\tan^{-1}x = \frac{\pi}{3} $.
- Evaluate $ \sin^{-1}(\cos \frac{\pi}{3}) $.
🔹 TWO MARK QUESTIONS (21–40)
- Prove $ \tan^{-1}\frac{1}{2}\sin^{-1}\frac{3}{4} = \frac{1}{2}\tan^{-1}\frac{12}{5} $.
- Show that $ \sin^{-1}(\cot^{-1}(\cos(\tan x))) $ is independent of $ x $.
- Evaluate $ \tan^{-1}\frac{2}{3} + \tan^{-1}\frac{1}{5} $.
- Solve $ \tan^{-1}x + \tan^{-1}2x = \frac{\pi}{4} $.
- Solve $ \tan^{-1}(2x) – \tan^{-1}(x) = \frac{\pi}{6} $.
- Prove $ \sin^{-1} \frac{1}{3} + \sin^{-1} \frac{1}{2} = \sin^{-1} \frac{7}{12} $.
- Solve for $ x $: $ \tan^{-1}x + \tan^{-1}(x+1) = \frac{\pi}{4} $.
- If $ \sin^{-1}x + \sin^{-1}y = \frac{\pi}{2} $, find $ x^2 + y^2 $.
- Evaluate $ \cos^{-1}\frac{1}{\sqrt{2}} + \sin^{-1}\frac{1}{\sqrt{2}} $.
- Solve $ \tan^{-1}x + \tan^{-1}2x + \tan^{-1}3x = \pi $.
- If $ \sin^{-1}x = \cos^{-1}y $, find relation between $ x $ and $ y $.
- Prove $ \tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = \pi $.
- Find the value of $ \sin(2\tan^{-1}3) $.
- Evaluate $ \tan^{-1}5 – \tan^{-1}2 $ in exact form.
- Solve $ 2\tan^{-1}x = \tan^{-1}\frac{3}{4} $.
- If $ \sin^{-1}x + \sin^{-1}y = \frac{\pi}{6} $, express $ y $ in terms of $ x $.
- Evaluate $ \cos^{-1}(\sin(\frac{\pi}{4})) $.
- Solve $ \tan^{-1}x + \tan^{-1}\frac{1}{x} = \frac{\pi}{2} $.
- Find $ x $ if $ \cot^{-1}x + \tan^{-1}x = \frac{\pi}{4} $.
- Evaluate $ \sin^{-1}\frac{3}{5} + \cos^{-1}\frac{4}{5} $.
🔹 FOUR MARK QUESTIONS (41–70)
- Prove $ \sin^{-1}\frac{1}{4} + \sin^{-1}\frac{1}{5} = \sin^{-1}\frac{9}{20} $.
- Prove $ \cot^{-1}7 + \cot^{-1}8 + \cot^{-1}18 = \cot^{-1}3 $.
- Prove $ 2\tan^{-1}\frac{\sin x}{1+\cos x} = x $.
- Solve $ \tan^{-1}x + \tan^{-1}(x+2) = \frac{\pi}{4} $.
- Prove $ \tan^{-1}a + \tan^{-1}b = \tan^{-1}\frac{a+b}{1-ab}, \quad ab<1 $.
- Solve $ \tan^{-1}x + \tan^{-1}(x-1) = \frac{\pi}{6} $.
- Prove $ \sin^{-1}x + \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2}+y\sqrt{1-x^2}) $.
- Solve $ 2\tan^{-1}x + \tan^{-1}(2x) = \frac{\pi}{2} $.
- Evaluate $ \tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 + \tan^{-1}4 $.
- Prove $ \cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy – \sqrt{(1-x^2)(1-y^2)}) $.
- Solve $ \tan^{-1}x – \tan^{-1}(x-1) = \frac{\pi}{4} $.
- Find the value of $ \sin(2\sin^{-1}0.6) $ using identities.
- Solve $ \tan^{-1}x + \tan^{-1}2x + \tan^{-1}3x = \pi $.
- Prove $ \tan^{-1}3 + \tan^{-1}7 = \tan^{-1}5 $.
- Solve $ \sin^{-1}x + \sin^{-1}y = \frac{\pi}{3} $.
- Prove $ \tan^{-1}1 + \tan^{-1}\frac{1}{2} = \frac{\pi}{4} $.
- Solve $ \tan^{-1}(x+1) – \tan^{-1}x = \frac{\pi}{6} $.
- Evaluate $ \cos(2\tan^{-1}\frac{1}{2}) $.
- Solve $ \tan^{-1}x + \tan^{-1}(2x+1) = \frac{\pi}{4} $.
- Prove $ \tan^{-1}x + \tan^{-1}\frac{1}{x} = \frac{\pi}{2}, \quad x>0 $.
- Solve $ \sin^{-1}x – \sin^{-1}y = \frac{\pi}{4} $.
- Evaluate $ \tan(2\tan^{-1}3) $.
- Solve $ \tan^{-1}x + \tan^{-1}(x+3) = \frac{\pi}{3} $.
- Prove $ 2\tan^{-1}x + \cot^{-1}x = \pi $.
- Solve $ \sin^{-1}x + \cos^{-1}y = \frac{3\pi}{4} $.
- Prove $ \tan^{-1}x – \tan^{-1}y = \tan^{-1}\frac{x-y}{1+xy} $.
- Solve $ \tan^{-1}x + \tan^{-1}2x + \tan^{-1}3x + \tan^{-1}4x = \pi $.
- Find domain and range of $ f(x) = \tan^{-1}(\frac{2x}{1-x^2}) $.
- Solve $ \tan^{-1}x + \tan^{-1}\frac{1-x}{1+x} = \frac{\pi}{4} $.
- Evaluate $ \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{5} $.
🔹 HIGHER ORDER THINKING (HOTS) QUESTIONS (71–90)
- Solve $ \tan^{-1}\frac{1}{x} + \tan^{-1}\frac{1}{x+1} = \frac{\pi}{4} $.
- Prove $ \sin^{-1}x + \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2} + y\sqrt{1-x^2}) $.
- Find domain and range of $ f(x) = \tan^{-1}\frac{2x}{1-x^2} $.
- Prove $ \cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy – \sqrt{(1-x^2)(1-y^2)}) $.
- Solve $ 2\tan^{-1}x + \tan^{-1}(1-x) = \frac{\pi}{2} $.
- If $ \sin^{-1}x + \sin^{-1}y = \frac{\pi}{2} $, find $ xy $ in terms of $ x $ and $ y $.
- Evaluate $ \tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 + \tan^{-1}4 + \tan^{-1}5 $.
- Prove $ \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \tan^{-1}\frac{5}{7} $.
- Solve $ \tan^{-1}x + \tan^{-1}2x + \tan^{-1}3x = \pi $ for real $ x $.
- Evaluate $ \sin^{-1}\frac{1}{3} + \sin^{-1}\frac{2}{3} $.
- Solve $ \tan^{-1}x + \tan^{-1}(x+4) = \frac{\pi}{4} $.
- Prove $ 2\tan^{-1}\frac{\sin x}{1+\cos x} = x $ for all $ x \in \mathbb{R} $.
- Solve $ \tan^{-1}x – \tan^{-1}y = \tan^{-1}\frac{x-y}{1+xy} $.
- Find domain and range of $ f(x) = \sin^{-1}(\frac{2x}{1+x^2}) $.
- Solve $ \tan^{-1}x + \tan^{-1}(2x-1) = \frac{\pi}{3} $.
- Evaluate $ \sin(2\tan^{-1}\frac{1}{3}) $.
- Solve $ \tan^{-1}x + \tan^{-1}\frac{1}{x} = \frac{\pi}{2}, \quad x>0 $.
- Solve $ \tan^{-1}x + \tan^{-1}(x+1) + \tan^{-1}(x+2) = \pi $.
- Prove $ \tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = \pi $.
- Solve $ \tan^{-1}x + \tan^{-1}(x+5) = \frac{\pi}{4} $.
🔹 COMPETITIVE TYPE QUESTIONS (91–110)
- If $ \sin^{-1}x + \sin^{-1}y = \frac{\pi}{2} $, prove $ x^2 + y^2 + 2xy\sqrt{(1-x^2)(1-y^2)} = 1 $.
- Solve $ \tan^{-1}x + \tan^{-1}2x + \tan^{-1}3x + \tan^{-1}4x + \tan^{-1}5x = \pi $.
- Prove $ \sin^{-1}\frac{1}{4} + \sin^{-1}\frac{1}{3} = \sin^{-1}\frac{7}{12} $.
- Solve $ \tan^{-1}x + \tan^{-1}2x + \tan^{-1}3x = \frac{\pi}{2} $.
- Evaluate $ \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} $.
- Prove $ \tan^{-1}a + \tan^{-1}b + \tan^{-1}c = \pi $ given $ a+b+c=3 $.
- Solve $ \tan^{-1}x + \tan^{-1}(x+6) = \frac{\pi}{4} $.
- Prove $ \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{1}{2} $.
- Solve $ \tan^{-1}x + \tan^{-1}(x+7) + \tan^{-1}(x+14) = \pi $.
- If $ \sin^{-1}x + \cos^{-1}y = \frac{\pi}{2} $, express $ y $ in terms of $ x $.
- Prove $ \tan^{-1}x + \tan^{-1}\frac{1}{x} = \frac{\pi}{2}, \quad x>0 $.
- Prove $ 2\tan^{-1}\frac{1}{1+x} = \tan^{-1}\frac{2}{x} $.
- Prove $ \sin^{-1}x + \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2} + y\sqrt{1-x^2}) $.
- Prove $ \cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy – \sqrt{(1-x^2)(1-y^2)}) $.
- Prove $ \tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = \pi $.
- Prove $ \tan^{-1}a + \tan^{-1}b = \tan^{-1}\frac{a+b}{1-ab}, \quad ab<1 $.
- Solve $ \tan^{-1}x + \tan^{-1}2x = \frac{\pi}{4} $.
- Solve $ \tan^{-1}x – \tan^{-1}(x-1) = \frac{\pi}{4} $.
- Prove $ 2\tan^{-1}\frac{\sin x}{1+\cos x} = x $.
- Prove $ \sin^{-1}\frac{1}{4} + \sin^{-1}\frac{1}{5} = \sin^{-1}\frac{9}{20} $.
Written By
Full Stack Developer and 5-Time World Record Holder, Grandmaster Bikram Sutradhar
bAstronautWay : A Government-Approved Trademark Brand
SirBikramSutradhar on YouTube
